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Abstract

The problem of recognizing objects imaged in complex real-world scenes is examined from
a parametric perspective using the theory of statistical estimation. A scalar measure of an
object’s complexity, which is invariant under affine transformation and changes in image noise
level, is extracted from the object’s Fisher information. The volume of Fisher information is
shown to provide an overall statistical measure of the object’s recognizability in a particular
image, while the complexity provides an intrinsically physical measure that characterizes the
object in any image. An information-conserving method is then developed for recognizing
an object imaged in a complex scene. Here the term “information-conserving” means that
the method uses all the measured data pertinent to the object’s recognizability, attains the
theoretical lower bound on estimation error for any unbiased estimate of the parameter vector
describing the object, and therefore is statistically optimal. This method is then successfully
applied to finding objects imaged in thousands of complex real-world scenes.
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1 Introduction

Charge-coupled device (CCD) cameras typically produce scene images with extremely low
but nonzero noise variance. In fact, for object recognition purposes in computer vision, an
initial assumption often is that the noise can be neglected so that the data at each pixel can

be regarded as deterministic.

In the present investigation, however, we take an alternative approach that follows a
strictly physical interpretation of classical estimation theory. First, we use experimental data
to determine the joint probability distribution of the pixel brightness measurements in our
CCD images. We use this to construct the likelihood function for any parameter set that is
to be estimated given our image data. It is significant that the form of the likelihood function
in this physical approach is not arbitrary, but depends upon the probability distribution of
the brightness measurements no matter how low the corresponding noise variance is at each

pixel, as long as it is nonzero. Moreover, it is the form of this likelihood function, not the

level of the noise, that determines the optimal method of recognizing an imaged object.

To emphasize these issues, we show how a scalar measure of an object’s complezity, which
is invariant under affine transformation and changes in image noise level, can be extracted
from the determinant of the object’s Fisher information matrix. The volume of Fisher
information is shown to provide an overall statistical measure of the object’s recognizability
in a particular image, while the complexity provides an intrinsically physical measure that
characterizes the object in any image. We then derive a method of recognizing an object
in a complex scene that attains the theoretical lower bound on mean-square error for any
unbiased estimate of the object’s parameter vector, and therefore is by definition statistically
optimal and information-conserving. From a computer vision perspective, we consider the
information-conserving property of this estimator to be most significant because it assures
that the method uses all the measured data pertinent to the object’s recognizability regardless
of the noise level. Many popular edge-based methods, for example, discard a significant
amount of information pertinent to an object’s recognizability and are therefore inherently

sub-optimal.

To illustrate our approach, we focus attention in the present paper on the problem of

1




recognizing objects that are uniquely determined by the six parameters of an affine transfor-
mation as well as a seventh parameter that identifies the class of the object. Here, the affine
transformation describes rigid body motion and linear distortion of a model object, while
the class distinguishes it from other objects with the same affine parameters. For inherently
three-dimensional objects, the class must be supplemented by further parameterizations that
account for such effects as variation in shading caused by changes in surface orientation with
respect to a given source distribution and receiver geometry. For the recognition of flat
objects in real world scenes, however, we show that such ancillary parameterizations are un-
necessary so long as the object does not have a purely specular surface. This is because the
optimal estimator for the affine parameters takes the form of a weighted filter that is invari-
ant to the uniform variations in shading characteristic of such flat objects. This weighting is
also necessary to discriminate against image ambiguities that are not explicitly accounted for
in classical estimation theory. It is significant that these image ambiguities make the recog-
nition problem inherently nonlinear. A global optimization procedure is therefore necessary

to compute the filter output and obtain the optimal estimate.

Our method’s performance is evaluated experimentally by applying it to the problem of
recognizing traffic signs in images of complicated outdoor scenes. In both our theoretical and
experimental analysis, we find that recognizability is strongly dependent upon the object’s
complexity. We show how this measure becomes analogous to the complexity traditionally
referred to in signal processing when the affine transformation is reduced to a 1-D shift in

the position of a 1-D object.

2 The statistics of image brightness

Charge-coupled device (CCD) cameras do not output the intensity W of light. Instead,
they output a power-transformed intensity on an 8-bit grey-scale which we refer to as image
brightness I(z,y). The brightness is linearly proportional to W~"(z,y) where 7 is a “gamma
correction,” e.g., v = 2.2 [18]. The purpose of this transformation is to correct for the
response of cathode-ray tube monitors so that the output of any monitor is proportional to

intensity.




Experiments with the CCD video camera used in our vision system indicate that the
standard deviation o(z,y) of the output I(z,y) is not only small compared to the mean
m(z,y), but, as shown in Figure 1, does not depend on the mean or on position (z,y). The
noise, therefore, is additive and signal-independent, such that o(z,y) = 0. We speculate
that the noise is due to small mechanical vibrations between source and receiver, as well as
electronic shot noise. Thermally induced fluctuations of natural light, however, are not a
significant cause of errors in our measurements as is shown in Appendix A.

Sample Mean and Std. Deviation
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Figure 1: The measured mean and standard deviation of the image brightness I as a function
of the mean. The sample standard deviation is signal-independent and obtained by averaging
hundreds of images of outdoor scenes. The average standard deviation is 2.65.

Our measured average skew of —0.02 and kurtosis of 2.81 are so close to the corresponding
Gaussian values of 0 and 3, respectively, that our data can be effectively modeled as Gaussian
at each pixel. By computation of the sample covariance of brightness between image pixels,
our experiments also indicate that the brightness measurements are statistically independent

across the pixels.

Let vector I represent image I(z,y) where the rows of the image are concatenated into one
column vector in lexicographic order. Each component I of vector I contains an independent
intensity measurement I(z,y) for 1 < k£ < MN. Then the probability density for I is

MN
P(I)=(§7r—o_21)']\7]\']/—26}(p (—'2—};5 ;(Ik‘_mky) . (1)




3 Recognition as a parameter estimation problem

We use the six-dimensional vector a = (zo, yo, 0o, Sz, $y, @) to describe rigid body motion
and linear distortion of an object ¢ in an image with position xg = (z0,9Y0), rotation 8y,
contractions sz, sy, and skew o which vanishes in a rectangular Cartesian coordinate system.
For example, suppose the general Cartesian coordinates (z’, ') are related to the rectangular

Cartesian system (z,y) by the 2-D affine transformation

(C' A11 A12 A o

y' Ay Az Yy Yo

which can be expressed more succinctly as x' = Ax — xg, where

sz 0 cos by sin g
A= . (3)
0 s, —sin(o + @) cos(f + @)

A model object ¢(z’,y’) in some ideal reference frame (z’,y’), therefore, appears as a trans-
lated, rotated, contracted and skewed object g(z,y;a) in the covariant reference frame (z,y)
of an image. The parameters a are then measured within the image reference frame such
that —00 < 20,90 < 0,0< 6y <27, —7/2< a < 7/2,and 0 < Sz, 8y < 00, where dilations
occur for 0 < s;,s, < 1 and contractions for 1 < s, Sy.

To account for the possibility that distinct objects may have coincident vectors a we
define an additional parameter v that identifies the class of the object. For example, in
traffic sign recognition, a “slow” sign is in a different class from a “yield” sign, although the

two may have the same a.

From the perspective of statistical estimation theory, recognizing an object is the same

as estimating the parameters a and v.

4 Parameter resolution: Fisher information, recognizability, and the coherence

of objects in images

Let us consider the problem of recognizing an object of a given class in some scene. This can

equivalently be posed as the problem of estimating the parameter vector a given the image
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data I. In this case, the likelihood function for a, given the image data I, is

MN
P(lls) = i eso (557 2 (s — mfa)Y @

where the mean my(a) explicitly depends on the parameters to be estimated. The form of
this likelihood function, given our CCD data, is very different from that in active radar,

laser, and sonar imaging where nonlinear speckle noise is found [13].

The lower bound on the mean-square error in any unbiased estimate & can be expressed

as

E[(a-a)(a—a)’] 237, (5)

where the Fisher information matrix J is defined by

5= — [ o lnPI|a]= 121‘{;“"2 <6m$y, )am(x,y;a)) ©

0a;0a; == Oa; Oa;

Here the image mean m(z,y;a) only depends on the parameter vector a for those pixels
(z,y) € Ot that constitute the expected object g(z,y;a) and any neighboring pixels that
are affected by small changes in a. The Fisher information matrix, therefore, can be reduced

to

=Lt ¥ 0q(z,y;2) 9¢(2,y; ) M)

2 : ,
02 (2a)eO* Oa; Oa;

It is significant that any of the diagonal entries of the bound can be expressed as
o2
El(ai —a:)’] 237" = 5 £, (8)

where the object energy

E= 3} lgzy3) 9)

(z,y)€0

and the coherence scale .

0= ([J-l],-,- %)2 (10)
for parameter a; are physical descriptors of the object which are invariant only under rigid
body motion. The coherence scale ¢; measures the sensitivity of the object to variations
in parameter a; and, therefore, can be interpreted as the width of the object’s autocorre-

lation peak over lags in a;. An object with relatively high sensitivity to parameter a;, for
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example, will have a relatively narrow autocorrelation peak. The error in estimating param-
eter a;, therefore, increases with the corresponding object coherence scale ¢; and additive

noise variance, but decreases with object energy.

When all parameters are uncoupled and J is diagonal, the product of n, coherence
scales 4y - - - £, yields a coherence volume that is a scalar measure characterizing the combined
ne-dimensional variations of the object, where n, is the length of a. More generally, we define

the coherence volume V in terms of the determinant |J| of the Fisher information matrix by

V= (E)%‘lur%. (1)

o2

The lower bound can then be written as

-1 o?\™ 2
I =T |5 VA (12)
where J.4; is the adjugate matrix of J [21].

These coherence scales have compelling physical meanings that will be discussed in the

remainder of this section.

From the computer vision perspective, we consider the interpretation of J as an informa-
tion measure to be far more useful than its interpretation as the inverse of the theoretical
lower bound on estimation error. Our approach and purpose therefore stands apart from
Cernuschi-Frias et al.’s [4]. For example, in the type of optical pattern recognition problems
encountered with low-variance CCD camera measurements, the associated bounds on object
positional resolution fall in the sub-pixel regime, and are somewhat of an overkill. On the
other hand, because the volume |J| of Fisher information is inversely proportional to the lim-
1ting mean-square resolutional volume of the parameters that uniquely specify the object,
we consider it to be a scalar measure of the object’s recognizability in a given image. By Eq.
12 it is seen that there is a direct relationship between this recognizability measure and the
physical components of the Fisher information, namely, the object’s coherence volume and
energy. For example, within a given image, where the additive noise variance is uniform,
the information volume |J| only varies with the object’s coherence volume and energy. The
noise variance, therefore, factors out under variations in object recognizability, regardless the
noise level. This shows that it is the physical structure of the likelihood function and not the -
level of the noise that is most important in properly formulating the recognition problem.
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4.1 Position resolution

We first derive the lower bound on the error for any unbiased position estimate of an object
with known rotation, contraction and skew. Given the true position (a1, az) = (zo,¥0), the
Fisher information matrix, with elements

1 f‘i”vi( — %0,y — Yo) 9g(z — T,y — y")), (13)

az 8aj

=0 y=0
can be expressed by a spatial “bandwidth matrix” B = ¢%/E J that characterizes the object.
To do so, it is convenient to let the double sum in Eq. 13 be replaced by a continuous double

integral so that ¢(z,y) and Q(u,v) can be defined as Fourier transform pair

= / /O g(z,y)e 2 ddy (14)
and
(z,y) = /Oo /oo Q(u, v)e 2+ dydy (15)

where dzdy = (Az)? is the pixel area. The four elements of B can then be defined by a

mean-square bandwidth B2 in z,

B? = (f;))ZE /_Z /;o:ou2|Q(u,v)[2dudv, (16)

a mean-square bandwidth Bj in y,

B? AWE/ / v2|Q(u, v)[?dudy, (17)

and a cross-term

B, = B = 2E / / uv|Q(u, v)|*dudv, (18)

with the aid of Parseval’s Theorem

= [[ lae,v)Pdzdy = [ [* 1Q(u,v)Pdudo. (19)

These definitions for the object’s mean-square spatial bandwidth are similar to those intro-
duced for one-dimensional signal waveforms by Gabor [8]. A distinction lies in the positive-

semidefinite nature of our object brightness data versus the zero-mean nature of modulated
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signal waveform data. As a result, our mean-square bandwidths are defined about zero spa-
tial frequency, as in Ref. [13], while those in the signal processing literature are defined about

some average frequency that approximates the carrier frequency for narrowband signals.

Given these definitions and the derivative rule for Fourier transform pairs, the lower

bound on position recognition can be expressed as

2 2 B> _—B? :
-1 __ U_ -1 _ 0'_ Y zy 2 :
J = 7 B 7 _p? - A%’yo, (20)
Ty T
where
1
AZo,yo = |B| 2 (21)

is the coherence area of the object, which follows from Eq. 11, where V = A, ,, for this 2-D

scenario. For example, the lower bound for estimating zq is simply

E[(2o — z0)’] 2 J;! = % Loo: (22)
where coherence length scale £;, equals B}/|B| or BZ A2 _ . and the lower bound for yp is
. 2 a9
E[(go — y0)*] 2 J,; = T b (23)

2
Z0,Y0 °

where £,, equals B2 A This analysis provides a 2-D extension of the well-known relation-
ship between a 1-D signal’s mean-square bandwidth and the optimal resolution attainable
in an estimate of its position [5]. While the coherence length scales £, and £,, could have
been obtained directly from Eq. 10 without introducing the mean-square bandwidth con-

cept, this would have circumvented both the historical perspective and an important physical

interpretation.

The coherence areas and coherence length scales of two traffic signs, a stop sign and
a European no-entry sign, are compared in Figure 2. The stop sign has a much smaller
coherence area than the other sign. Its position, therefore, can be resolved much more easily.

The bound on position estimation error is not invariant to changes in object rotation, as

is shown in Appendix B by principal component analysis.
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Figure 2: Above, the images of two traffic signs and their 2D-autocorrelation surfaces are
shown. The white centers of the autocorrelation surfaces correspond to the coherence areas
of the signs. The European no-entry sign’s coherence area of 2.2 % of the sign’s area is much
larger than the stop sign’s, which is 0.4 %. This indicates that the position of the stop sign
can be resolved more easily than the position of the European no-entry sign. Below are 1D-
horizontal slices through the center of the signs’ autocorrelation surfaces, where y-positions
are fixed and z-positions vary. The stop sign’s horizontal position can be resolved better
than the European no-entry sign’s because of its narrower autocorrelation peak-width and
shorter coherence length.




4.2 Angular resolution

Next, assume that only the rotation 6, of the object about some point in the image plane is

unknown. By Eq. 10, the angular coherence scale for object rotation is

E 2
fﬁo == da(z,9) 2 ) (24)

L(zy)eo+ ’ 36,

This leads to the bound
2
g

E

on angular resolution of the object, which is invariant to changes in object position, since

E[(fo - 60)"] > Jii' = = £, (25)

g—’gg and %% vanish, but depends on contraction and skew of the object, since E and £y, are

functions of s, s,, and a.

The angular coherence scales of a stop sign and a European no-entry sign are compared
in Figure 3. The European no-entry sign has greater circular symmetry and therefore has a
wider angular autocorrelation peak and correspondingly larger angular coherence scale than

the stop sign.

Auto-correlation R(angle)

l ] L] T ] T 1
"E-No-Entry" -—

Correlation

-180 -135 -90 -45 0 45 90 135 180
Rotation angle in degrees

Figure 3: Comparison of angular coherence length scales £5,: The European no-entry sign’s
autocorrelation peak is much wider than the stop sign’s, indicating that its rotation is more
difficult to resolve.
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4.3 Contractional resolution

Finally, assume that only the object’s contractional distortions s, and s, are unknown.
Then, for 2-D parameter vector (a3, a2) = (Sz,$y), where sg, 8, > 0, J is a 2 x 2 matrix with
elements defined in Eq. 7. The coherence area A,,, and coherence length scales £, £,

are then dependent, by Eq. 11, on both diagonal and cross terms of the Fisher information

matrix, such that

E _1
Avey = (55) 1I7E, (2)
E\? E\:
L, = ([J—l]ll —a—2> and {4, = ([3—1]22 ;) . (27)

The bounds for contractional resolution are then

s _ 2 > 2
E[(3; — s2)°] 2 7 £, (28)
and
o2
E[(3, — s,)7] 2 Eeiy- (29)

While these bounds are invariant to changes in object position, they are invariant to changes

in object rotation only when the contractions s; and s, are equal.

The contractional coherence areas and scales of three signs are compared and related to

the respective autocorrelation peak widths in Figure 4.

5 The complexity of imaged objects

According to standard usage, an object is considered to be complez if it is “composed of
elaborately interconnected parts.” We may gather from this that as complezity increases so
does the number of interconnected parts. These ideas can help us formulate a quantitative

definition for the complexity of an imaged object.

Let us first consider two objects of exactly the same dimensions but of different com-
plexities that are imaged in an otherwise empty scene. For example, let the more complex
object be a grey-scale Mona Lisa without a picture frame, the less complex object be a blank
white canvas of the same dimensions, and the empty background be solid black. Because
of their like dimensions, the two objects occupy the same overall area. As may be inferred
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Figure 4: Above, the autocorrelation surfaces of model signs European no-entry, Stop and
Priority are shown with contraction parameters s, and s, increasing from the lower left to the
top right of the surfaces. The white centers of the autocorrelation surfaces are the correlation
peaks and correspond to the contractional coherence areas of the signs. The European no-
entry sign’s contractional coherence area is much greater than the Stop sign’s, which means
that the contractional parameters s, and s, are easier to resolve for the Stop sign. Below,
1-D diagonal slices of the autocorrelation surfaces are shown along the diagonal s, = s,.
Since the peak of the European no-entry sign’s autocorrelation is much wider than the stop
sign’s, the stop sign’s size is much easier to resolve than European no-entry sign’s.
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from their descriptions, however, the two objects have vastly differing coherence areas. Let
us regard a coherence area as small if the ratio of it to the overall object area is much less
than 1. Then, for example, the Mona Lisa’s coherence area will be small, due to its large
number “of elaborately interconnected parts,” but the number of coherence areas or cells
that fit into the Mona Lisa’s overall area will be large. Conversely, the coherence area of the
blank canvass will not be small, but the number of coherence cells that fit into the blank
canvass’ overall area will be near unity. We may consider the overall object area as a kind
of outer scale and the coherence area as a kind of inner scale for variations in an object’s
2-D position. It is the ratio of such an outer scale to an inner scale that determines the
number of coherence cells in the object, also referred to as its degrees of freedom, which can
be interpreted as its gain in sensitivity under transformation over the empty object space.
By the foregoing argument, this ratio also serves as a quantitative measure of an object’s
complexity. B

Generalizing these concepts, we define the outer volume under affine transformation,
denoted by S, to be the object area times 272. This is the product of the outer scales for
2-D positional transformation, rotation, 2-D con’;ractions, and skew that are, respectively,
the object area A, 27, unity, and w. The complexity of an object under affine transformation

is then the ratio of this outer volume to the coherence volume V' defined in Eq. 11, so that

AN
C = é = A2r? (%) Rt (30)

The complexities of various traffic signs are compared in Figure 5. As may be expected
from a qualitative perspective, signs with inscriptions and human figures have much higher
complexities than signs composed only of simple geometric shapes. Our data analysis will
later show that the ability to unambiguously resolve such an object increases with the object’s
complexity.

When the affine transformation is reduced to a 2-D translation, the relevant positional

complezity becomes

A

)
AIO »Yo

where the coherence area A, is given in Eq. 21. When the translation is restricted

Cao,30 (31)

to a single dimension, the above complexity becomes analogous to that used in the signal
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Figure 5: Comparison of complexity C for various traffic signs: Signs with inscriptions and
human figures have higher complexity than signs composed only of simple geometric shapes.

processing literature for the analysis of complex waveforms [5, 20].

Similarly, we define the rotational complezity of an object by

_27r

Co, = — 32
o EGO ? ( )
and the contractional complerity by
1
CS = 9 33
Ao (33)

where the rotational coherence scale £y, is defined in Eq. 24 and the contractional coherence
area A, s, in Eq. 26. These positional, rotational, and contractional complexities of the
traffic sign models are plotted in Figure 6 and are consistent with qualitative appraisals of

the inherent positional, rotational and contractional symmetries of the signs.

6 Image edges

There is an important connection between the positional Fisher information of an object and

“edge-based” recognition. Both require computation of the spatial gradient (a—q(.gZ—’yl 3_'?&_73'2)

3

of the expected object. By Eq. 13, however, the positional Fisher information integrates
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Figure 6: The positional, rotational, and contractional complexities of the traffic sign models.
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gradient factors over the entire object. This includes both slowly varying brightness contri-
butions over the entire area of the object as well as rapid variations at edges that comprise a
relatively small fraction of the object’s overall area. A priori, there is no way to judge which
of these will make the dominant contribution to the Fisher information. In spite of this basic
fact, edge-based recognition methods threshold the gradient magnitude over the object so as
to discard all information pertinent to the object’s recognizability that is not contained in its
edges. The danger in edge-based methods, therefore, is that a potentially larger amount of
information may come from slowly varying brightness changes accumulated throughout the
object’s area than from rapid changes at edges. In this case, edge-based recognition methods
are inherently sub-optimal. Conversely, if the predominant positional information about an
object is concentrated in its edges, the analysis of Fisher information, coherence scales and
complexity remains equally pertinent regardless of the method of recognition. Moreover,
the foregoing analysis goes beyond consideration of positional variations, as expressed in
terms of the horizontal and vertical gradient components also used in edge methods, but

also accounts for the general linear variations permissible in an affine transformation.

Figure 7 illustrates the similarities and differences between a model sign with information
concentrated at distinct edges, its derivatives with respect to various affine parameters, and

its edge maps.

Figure 7: A stop sign, its partial derivatives with respect to z, y, 4, and s = s, = Sy, and
its edge map and thresholded edge map.

7 Maximum likelihood estimation of an object in a scene image

In this section, we derive a method of recognizing an object in a complex scene that attains
the theoretical lower bound on mean-square error for any unbiased estimate, and therefore

Is by definition statistically optimal and information-conserving.
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Given the image data I, and following classical estimation theory, we use the likelihood

function of Eq. 4, to derive the maximum likelihood estimate
yL = arg max P(I]a) (34)

of the parameters a. The maximum likelihood estimate a,s;, can be found by solving the

likelihood equation

dln P(Ila
—Ila—a(lul"“:ﬁm =0. (35)
Since . )
0ln P(I|a) 0 ( 1
9nlR) 2 (L LS (- mua)) (36)
Oa Oa 202 Ek: k k

the maximum likelihood estimate apsz is equal to

argrrgngé—; ( Z (I(z,y) — m(z,y))* + Z (I(z,y) — q(z,y; a))z) ) (37)

(z,y)€EB (z,y)e0t
where region B consists of background unrelated to the object while region O7 is the union
of all pixels that contain the expected object ¢(z,y;a) as well as a slightly perturbed or
variational object ¢(z,y;a + Aa). The first sum in Eq. 37 can be discarded, because
the background does not depend on the object properties described by parameter a. The
maximum likelihood estimate is then

dyr=argmin 3 (I(z,y) - ¢(z,y;2))". (38)

(z,y)€Ot
After expanding the square, this reduces to
ayr = arg max E I(z,y)q(z,y; a), (39)
(z,y)€O+

because the data energy ¥, ,)e0+(I(2,y))? is always independent of a, and, for small per-
turbations of a about its true value, the expected object energy 3, ,)c0+(¢(2,y; a))? can be

taken as a constant independent of a.

We interpret ¢(z,y;a), in Eq. 39, as a multidimensional matched filter, which, when
evaluated at some particular ag, is referred to as the replica ¢(z,y;a0). To find the maximum
likelihood estimate apsz, therefore, we search for the replica that best matches the object
in the image. The value of the parameter vector that corresponds to this best match is the
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maximum likelihood estimate. To put it another way, we seek the value of the parameter
vector that maximizes the output of the multidimensional matched filter given by the sum

in Eq. 39.

To ensure that our filter is not biased by changes in either the data energy or the expected
object energy within the local replica window, we employ a local weighting. The output of
the resulting weighted multidimensional matched filter

r(a) = ————(A(a) > L(z,y)q(z,y;2) — mi(a)m,(a)), (40)

O'I(a)o'q(a) (z,3)€0

quantifies how well the measured data in subimage I,(z,y) matches the replica object
in g(z,y;a). Here A(a) is the number of pixels in the replica image g(z,y;a) that have
nonzero brightness, and therefore constitute the replica object, while O is the region that
contains the replica object, as illustrated in Figure 7. The local variance of subimage I(z,y)
is

of(a) = A(a) X Iq'(x,y)z—( > Iq(w,y)) ;

(z.y)€O (z,y)€0

the variance of replica image ¢(z,y;a) is

=A(a) Y q(z,y;2)’ (Eq,y,),

(z,y)€0 (z,y)€0

and the local image means are m;(a) = Lewyeo Ie(z,y) and my(a) = ¥, 0 9(z,y; a).
It is noteworthy that the weighted multidimensional matched filter is dimensionless, with
Ir(a)] <1 by the Cauchy-Schwartz inequality, so that scene object I, and replica object ¢

are perfectly correlated when r(a) = 1.

When the estimate & is very close to its true value, small changes in a lead to negligible
changes in mjy, m,, 07, and oy, so that these sample means and standard deviations may be
taken as locally constant. In this case, the weighted matched filter of Eq. 40 becomes a
linear function of the matched filter, the sum in Eq. 39, as demonstrated experimentally in
Figure 9, so that the value of a that maximizes r(a) is the maximum likelihood estimate,

where

ayr = argmax r(a). (41)

18




subimage I, replica image q(x.y)

yO +n T
I
Yo— \
: unknown T~ 2610
. scene image background region O background
! 1 . containing object
X, Xg +Mm

Figure 8: Scene image I(z,y) with subimage I,(z,y) and replica image ¢(z,y). Since the
replica object may not be exactly rectangular, the portion I,(z,y) of the scene image that
does not overlap the object replica must be removed from the match. To do so, the m x
n replica image ¢(z,y) is set to zero for pixels not belonging to the replica object. The
computation time for any value of r is proportional to the number of nonzero pixels A in
the object, which is usually much smaller than the number of pixels in I.

Therefore, while there may be local optima in the weighted matched filter output, the lo-
cation of its global optimum in the parameter search space corresponds to the maximum
likelihood estimate. The maximum likelihood estimate, and hence the weighted matched
filter, asymptotically attains the lower bound derived in Eq. 12, and is therefore optimal
and information-preserving when the signal-to-noise-ratio (SNR) E/o? is high, as it is for
the present recognition problem with CCD data. An analytic proof of this can be found in
Ref. [14].

However, a more practical experimental proof of our method’s statistical optimality is
readily provided by inspection of Figure 9. Over the entire global peak, the weighted matched
filter, a comparison of noiseless object replicas versus noisy image data, is indistinguishable -
from the autocorrelation of the coincident noiseless object replicas. While such a result is
not surprising, nor does it make the corresponding sub-pixel positional error bounds more
relevant, it nonetheless confirms that our approach is information-conserving, and therefore

takes full advantage of all the image data pertinent to the object’s recognizability.
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Figure 9: Above, a scene image with a “one way” sign. In the middle, three ambiguity
surfaces computed for all possible translations of the “one way” sign replica with fixed angle
and scaling parameters. The left surface is computed using the matched (M) filter (Eq. 39),
the middle surface is computed using the weighted matched (WM) filter (Eq. 40), and the
right surface is the autocorrelation. The correlation peak of the surfaces is a white spot
located in the upper left of each plot. Below, horizontal and vertical slices through the
global peaks of the ambiguity surfaces. The left graph shows slices along the z-axis of the
ambiguity surfaces with the y-coordinate fixed, and the right graph shows slices along the
y-axis with the z-coordinate fixed. The methods converge at the true solution.
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8 Brightness invariance of flat surfaces

The brightness of an object depends on its reflectance properties, its shape, and its illu-
mination. In particular, the scene radiance L of a surface patch centered at world point
(X,Y,Z) is proportional to the image irradiance or intensity W measured at the corre-

sponding pixel (z,y), such that
W(z,y) =g L(X.,Y, 2), (42)

where ¢ is a function of parameters of the imaging system {10]. Since the sensitivity of our
imaging system is uniform over the whole image, we can assume that g is constant. The

imaging scenario is illustrated in Figure 10.

scene
radiance

L(X,Y,Z)

scene

image -
irradiance
I(xy) camera

Figure 10: The image irradiance I(z,y) is a function of the corresponding scene radiance
L(X,Y,Z), which depends on the source direction s, the viewer direction v, the surface
normal n, and the scene irradiance E;.

The scene radiance is related to the object’s bidirectional reflectance distribution function

(BRDF) f, and the source irradiance E; by
L(X.Y,Z) = f:(s(X.,Y,2),v(X,Y,Z),X,Y, Z) Ei(s(X, Y, Z)), (43)
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where s(X,Y, Z) is the direction of a collimated light source, and v(X, Y, Z) is the direction
of the camera. For a flat surface, however, the direction of the collimated source is constant
over the object such that s = s(X,Y,Z). Under the benign assumption that the object’s

reflectance has directional properties that are separable from its spatial properties, we have
fr(8,v(X,Y, 2), X,Y,Z) = fu(s,v(X,Y,2)) o(X,Y, Z). (44)

A special case of this is a Lambertian surface where fn1(s,v) = 1/7 and o(X,Y, Z) is the
albedo. If the camera is at least a few object lengths away then its directional variations
over the object will be so small that the camera’s direction can be considered constant such

that v = v(X,Y, Z). Then the image brightness ] = W~ becomes
I =c¢p"X)Y,2), (45)
which, to within the constant factor

& = (g fuls,v) Ex(s))™, (46)

is invariant to changes in the geometry of the source, receiver and object. It is noteworthy
that in the case of a Lambertian surface, the above result is valid regardless of whether
v(X,Y, Z) is effectively constant or not. This is significant because many real-world surfaces
exhibit Lambertian behavior, and traffic signs in particular are designed to have Lambertian

reflectance properties.

By distributivity, these results are easily extended to a hemispherical distribution of
distant sources, such as the sky, so that the image brightness of the flat object remains
invariant to changes in the geometry of the source, receiver and object to within the constant

factor c,.

9 Recognition of flat objects

The output of the weighted matched filter, given in Eq. 40, is invariant to linear trans-

formations of image brightness of the form

I'(z,y) = l(z,y) + o, (47)
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where ¢; and ¢, are scalar constants as shown in Appendix C. But the analysis of the
previous section shows that, to within a scalar factor, the image brightness of a flat object
remains invariant to changes in scene shading brought upon by changes in the geometry of
the source, receiver and object. The output of our weighted matched filter, therefore, is
invariant to such changes in scene shading, as is our optimal estimate of the parameters a,

and as is necessary for object recognition.

“‘Uncooperative conditions such as strong shadows and occlusion can change the image
irradiance nonuniformly and will cause problems with recognition if they are not accounted
for. However, this is not an exclusive weakness of our present formulation, since any ap-
proach, for example, systems based on contour or edge detection, will have difficulties in

such unpredictable and adverse situations.

10 The traffic sign recognition system

Our method’s performance has been evaluated experimentally by applying it to the problem
of recognizing traffic signs. This application is very valuable for intelligent vehicles, which
can use the recognition results to adjust their speeds or localize themselves in their environ-
ments [2]. There are several conference papers on traffic sign recognition, for example, Refs.
(1, 6, 11, 17, 19, 25]. Our first results were published in Ref. [3]. Our method stands apart
from previous approaches, because it is not restricted to edge detection as Refs. [1, 6, 17],
and it does not rely on color information as Refs. [11, 19, 25]. In principle, our approach

could be extended by parameterizing color information.

An overview of our traffic sign recognition system is shown in Figure 11. The system has
a library of replica models, one for each traffic sign class, which are input along with a scene
image. It outputs a description of the recognized traffic sign in the scene image or concludes
that the scene does not contain a traffic sign. The system contains three components: a
replica generator discussed in Section 11, a weighted matched filter discussed in Section 7,

and a parameter perturbation component discussed in Section 12.

The recognition process starts by choosing an arbitrary model class v and an initial

parameter vector a randomly. The replica generator uses the initial guess of a to transform
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the model image into replica image ¢(z,y;a,v). This replica is then used by the weighted
matched filter 7(a) to quantitatively evaluate the match. If the match is poor, meaning it does
not satisfy a predetermined threshold, the parameter vector a is perturbed using simulated
annealing, a standard nonlinear optimization method. With the perturbed parameter vector,
a new replica is created and tested.

The process of perturbing and evaluating a is iterated for a fixed amount of time and
then repeated for all sign classes. If the best matching replica image ¢(z,y; a*, v*) among all
parameters a and classes v correlates highly with the scene image, meaning it surpasses a
predetermined threshold, it describes the recognized object and is the output of the system.

Otherwise, the system outputs that no traffic sign was found in the scene.

Models Scene

Recognized Object

Repli Weighted
eplica
Matched
Generator atche —
match
A
4
new Paramett_er
position Perfi}lsliggtlon
contraction Simulated
rotation Annealing

Figure 11: The traffic sign recognition system.

11 Generating replicas from model images

For efficiency reasons, we use five parameters (zo,yo, 6o, 5z, ,) to approximate the affine
transformation defined in Eq. 3. The skew parameter « is not varied, but set to zero. This
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is a valid approximation of transformations that traffic sign images undergo, because the
signs are generally fronto-parallel to the image plane or tilted by not more than 45° and are

far away from the camera compared to their sizes.

Figure 12 shows how a replica image is generated from a model by subsampling. In this
example, the parameters are chosen so that the replica consists only of the circled pixels of
the model and additional zero-brightness pixels. For other parameter choices, a four-point
interpolation may be necessary to compute the brightness for the replica. Examples of other
replicas are shown in Figure 13. Our method computes the replica very quickly by sweeping
over the model image only once. The time for creating a replica image from a n x m model

is O(nm).

Replica
image

pixel in

® model ® O@O [ ] 0@0 ® O added

Zero
o0 0® 060000

(® template @.). IO o(®

Figure 12: A 5 x 5 replica image is obtained from a 9 x 9 model image using contraction
parameters s, = s, = 2 and rotation parameter fy = 45°. For the transformation, the pixels
along diagonal vectors tx and ty are rotated by 45° and become aligned with the coordinate
system of the replica. Similarly, the pixels along vectors mx and my are rotated by 45° and
become aligned with the diagonals of the replica. Pixels of zero brightness are added in the
replica image where necessary.

12 The simulated annealing algorithm

Since the space of possible solutions of the recognition problem is extremely large, an exhaus-
tive search of this space is computationally too expensive. We therefore base our recognition
method on simulated annealing, a popular search technique for solving nonlinear optimiza-
tion problems [15, 12], which has been applied to many computer vision problems, e.g., [7].
Its name originates from the process of slowly cooling molecules to form a perfect crystal.

The analogue to this cooling process is an iterative search process, controlled by a decreasing
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Figure 13: Six replica images of a “slow” sign, obtained by sampling the “slow” sign model
at various sampling rates and degrees of rotation.
“temperature” parameter. At each iteration j, the algorithm generates a replica q(z,y;a,v)

as described in Section 11. A new test value aggt for parameter a at iteration j is created by
aild = ™V + Aa®), (48)

where aU=1) is the previous value of a and step Aal) is a random variable that is uniformly
distributed within some interval [—A, A]. The step bound A is determined experimentally.
To properly deal with image boundaries of a scene image, the j-th test value for the center

(zo0,Yo) of a replica of width w, and height w, is computed by

:c((,{zest = (xgj-l) + Ax(()i) _ wij—l)) mod (mj — wg(cj'l)) + ng—l) )
y((){t)est = (yéj"l) + Ay((,j) — wz(/j‘l)) mod (ny — wz(/j_l)) + ng—l)_

This definition avoids “attracting” the replica to the rim or corners of the scene image during

the search.

At each iteration, the test values for the rotation and contraction parameters are used
to create a replica image and correlate it with the scene image at the test location. If
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the weighted matched filter output rgzt increases over the previous output 71, the test

parameter values are accepted since a better match is found, i.e.,
it r9 >r00  then o) :=al?, (50)

for each parameter a. If the current match is worse than the previous match, i.e., rggt <
701 the test values are accepted if
f— J
exp(— Tt 5 1)
where f is randomly chosen to be in [0,1], T\ is the temperature parameter in the j-th
iteration, and the negative exponent corresponds to the Boltzman distribution for thermal

equilibrium. For a sufficient temperature, this allows “jumps” out of local maxima. The

cooling schedule for the j-th update of the temperature parameter is
TV = Ty /5 for 1<j<I, (52)

where Tp is the initial temperature and L is the number of iterations during the search.
Equation 52 describes the fast converging inverse linear cooling schedule [23]. See Ref. [22]
for a thorough comparison of annealing algorithms with finite length cooling schedules. Since,
after L iterations, the search may not have yielded the optimal solution, a local exhaustive
search is conducted around the best solution found. The best result of the local search
among all classes describes the recognized sign, as long as it has a filter output that lies
above threshold §. The pseudo code of the recognition algorithm is shown in Figure 14. The

behavior of the parameters during a typical run of the algorithm is shown in Figure 15.

13 Experimental results

Our data consists of more than 3280 scene images, a few of which are shown in Figure 16.
The main criterion for the selection of the scene images is to obtain a wide variety of traffic
sign scenes, originating from both the U.S. and Europe. The signs in the scenes have different
sizes and orientations, are illuminated differently, and have various backgrounds. Some traffic
signs are aged and bent, some are painted with graffiti. The model images used to represent

the traffic sign classes are shown in Figure 19.
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RECOGNITION ALGORITHM (Scene image I, set of models M)
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Initialize recognition threshold §.
Initialize parameter domains.
Initialize step bounds A,,, Ay, As,, As,, and Ag.
For each model class v € M do
Initialize position, contraction, and rotation of replica, e.g., at random.
Initialize search length L and temperature Th,.
For j=1to L do
Update temperature T0) := Tp/j.
Pick :cgft)est and y((,fzest randomly according to Eqs. 48 and 49.
Evaluate correlation r§£t as a function of
m(()’,t)est, :c((,fzest, sg1, (=1 and 98~ according to Eq. 40.
Choose £ uniformly at random within [0, 1].

If exp(—(rG-1) — r{0))/TW) > ¢

then ng )= x((){t)est, y((,j ) = y(()“ft)est, rl) = rgzt, update best replica ¢
else zgj) = x((,j_l), y(gj) = y(()j“l), rl) = p(G-1)

Pick sff}est, sgzest and 0((){26“ randomly according to Eq. 48.
Create new replica with contractions sg,),est, sz(/’;zest and rotation Géft)est.
Evaluate correlation r,(gzt as a function of

:c((,j), y((,j ), sg%est, sgt)est and 03{,,)8“ according to Eq. 40.

Choose £ uniformly at random within [0, 1].
If exp(—(r) — rZ)/TW) > ¢

then s{) := s0).,;, s() := sU),,, 6§ := 6., 10 :=r{2),
update best replica ¢.
Optimize ¢} by small local parameter perturbations
Determine replica ¢* with highest correlation among all ¢*.
If correlation for ¢* < threshold §
then output “No traffic sign found in image I.”
else output “Traffic sign q(z,y;z§, y&, 05, sy;v*) found.”

03 x>y

Figure 14: The recognition algorithm.
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Figure 15: Five graphs illustrating the behavior of the filter output r and the parameters
To, Yo, 0o and s, during a typical run of the simulated annealing algorithm with a stop sign
scene as input. The algorithm is run with the initial parameters reported in Figure 18.
The size of the search space is ca. 60 million. The algorithm takes ca. 18 min. on a Sun
SPARC station 5. The stop sign is almost recognized at iteration 2802, but the temperature
parameter is still too high for convergence. The sign is finally recognized at iteration 4050,
after which the parameters are only slightly adjusted.
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Figure 16: Some of the images used in the recognition experiments.
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The performance of our traffic sign recognition system depends on the complexities of
the signs in the images. The system recognizes 94% of the traffic signs correctly and misclas-

sifies 6%, provided that the signs are no smaller than about 8% of the scene’s area. These

" numbers discount mismatches of European signs with their corresponding American signs.

For example, replicas of European yield signs do not have any inscriptions, but correlate
highly with scenes of American signs with the inscription “yield.” Figure 17 shows some
recognition results, including scenes with occluded signs and with several traffic signs. (The
pseudo-code in Figure 14 is easily modified in line 25 so that several signs in a scene can be
found.) The initial parameter values used in the simulated annealing algorithm are listed in

Figure 18.

Figure 17: Recognizing multiple and occluded signs: the best matching replica is shown
overlying the circled sign in the image.
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Recognition threshold: § = 0.6
Search length: L =17000
Initial temperature: To =210
Initial position: (33((}0), y(()o)) = center of scene
Initial rotation: 0(()0) = —4°
Initial contraction: replica of size 70 x 70 pixels
Location domain: (a:((,j ), y(()j )) anywhere in scene
Rotation domain: 05 € [-10°,10°]
Contraction domain: m X n replica with m,n € [36 : 140] pixels
Step bounds: Az, = Ay, = 50 pixels, Ag, = 5°,
contraction bounds allow +10 pixel steps
Local exhaustive search: position shift by +2 pixels
replica contraction by £2 pixels
replica rotation by £1°

Figure 18: Initial parameter values for annealing algorithm.

Figure 19 shows the average best correlation values obtained for each model sign in the
experiments. The top graph illustrates the average best correlation for correct matches. For
example, replicas created from the footpath sign model match correctly with scene images
that contain footpath signs with an average correlation of 0.78. An average of 408 scene
images per traffic sign was used, except for the rare “slow” sign for which only a few images
could be obtained. Note for comparison that the average correlation for a replica that
matches with an arbitrary scene is zero, E[r] = 0, while a perfect match yields r = 1. The
dashed graph in Figure 19 illustrates the average best correlation for scene images that do
not contain a traffic sign in the correct class or do not contain a traffic sign at all. For
example, the best correlation of a stop sign replica with an arbitrary image that does not
contain a stop sign is 0.36 on average. The average is taken over about 2200 scene images

per sign class.

False positive matches occur when the best correlating replica is not in the correct class.
Figure 20 shows an example of a false positive match where the no-entry sign to be recognized
is covered by grafliti and occluded by a nonuniform shadow. Although the sign in the scene
can be found, as shown in the left image in Figure 20, the corresponding match yields a

filter output that is slightly lower than the output due to the best matching European yield
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Figure 19: Recognition results for the nine model signs, ordered by their complexities as
in Figure 5. The graph plots the average best correlation for scenes with a recognized sign
and the average best correlation for scenes without signs. The comparison shows that the
correlation for a correct match is high enough to identify the correct class uniquely among
the 9 classes, because the false positive correlations are always lower on average.
Underneath the sign models, a table lists the number of correct positive matches and, -
for scenes without corresponding signs, the number of correct negative and false positive
matches. The sum of the entries in each column gives the total number of images used for
each model class. False positive matches only occur for low-complezity signs.
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Figure 20: Results for an image with a nonuniform shadow. On the left, the final “no-entry”
replica is shown overlying the no-entry sign. On the right, the final “yield” replica is shown
overlying an arbitrary part of the image.

sign, as shown in the right image in Figure 20. As can be seen from the data in Figure 19,
the European no-entry and European yield models generally result in high filter outputs for

arbitrary scenes and are therefore responsible for the vast majority of false matches.

The poor performance of the European no-entry, European yield, and priority signs is
due to their low complexities, as defined in Eq. 30. Figure 5 shows that their complexities
are orders of magnitude lower than the complexities of signs that do not have such simple

geometric shapes.

Traffic signs with inscriptions and complicated shapes are generally more complex and
therefore more sensitive to positional, angular, and size variations. Such signs are easier to
unambiguously recognize than signs with low complexities. This fact can be used a priori in

evaluating the cross-class performance of a recognition system.

While most of the models used in our experiments are complex enough for robust recog-
nition, subsequent downsampling, as is necessary in replica contraction, can be detrimental.
Additionally, the complexity of a sign in a scene image can be significantly diminished if the
sign is occluded by other objects in the scene. We find that the higher the level of occlusion

and the smaller the complexity, the more difficult the recognition of the sign becomes.
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14 Summary and conclusions

We have developed a general method for object recognition that is information-conserving; it
attains the theoretical lower bound on estimation error for any unbiased estimate regardless
of the method of estimation, and is therefore statistically optimal. Our work quantitatively
shows how information pertinent to an object’s recognizability can be lost by many ap-
proaches to object recognition that are commonly used but are inherently sub-optimal from
a statistical perspective. Moreover, our theoretical foundation provides a framework for
quantitative comparisons between different recognition methods and shows under what spe-
cial circumstances sub-optimal techniques, such as purely edge-based methods, can become
optimal.

We have applied our theoretical results to develop a system that has successfully recog-

nized traffic signs in thousands of complex real-world scenes.

In future work, we will extend our approach to nonplanar 3-D objects, using physical
models [10, 24, 16] that describe the imaging process and the object’s reflectance properties.
This extension of our work will lead to new and interesting descriptors that characterize the

intrinsic physical properties of imaged 3-D objects.
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A Signal-dependent fluctuations of natural light are negligible

This section shows that thermally induced fluctuations of natural light are not a significant
cause of errors in our measurements. Natural light fluctuates as a circular complex Gaussian
random (CCGR) process [9]. The probability density of an M x N intensity image W

measured from a CCGR field is the gamma distribution

MN
1 -1 Wk
=g (&) W oo (), (53)
where the number of coherence cells p in the intensity average is defined to be the time-
bandwidth product y = T'r, where T is the coherence or measurement time, and 7 is the

bandwidth of the light. The expected value of Wy is o, and the variance of Wy is o /u.
Given Eq. 53, the probability density for the “gamma-corrected” brightness I is

PO = i (£) 27 oo (-uE), (54

1
since I = W,. For notational convenience, the subscript £ is dropped in the following. The

expected value of [ is

“TG +p)

E[l] = /0°° W P(W)dW = (%) S

and the variance of I is

o\ 3 DT + 1) — (T2 + )

An approximation of the mean of I using Stirling’s Formula that I'(x) = u“‘%e“ o)z yields
g g

1 1 1
1 Lip-i ~(3+u
1 (§+l‘)7 2e~(5t4) PR A e Bt 1
E[ll] = o7 - - N oY e W oe T R o7,
,1,; #“_Eeﬂ-

which holds for large p. The variance of I can be approximated by

2

g7

var(l) = e

and is therefore a function of the mean, which reveals that the noise arising from circular
complex Gaussian random fluctuations in the received field is signal-dependent. This is
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important for radar and sonar imaging [13], where, due to signal-dependent fluctuation
noise, the variance of high intensity measurements can be larger than the mean of low
intensity measurements. For fluctuations of natural light, however, the intensity average of
the measurements is large enough to reduce the standard deviation to a negligibly small

fraction of its mean, as shown in the following example for green light.
Green light has a bandwidth of Tgreen = 3 X 1032(550nm — 500nm)/(550nm x 500nm) =

5.45 x 10'® Hz. With exposure time of T = 1/100 Hz, the number of coherence cells is
p = 5.45 x 10'!. The ratio of the standard deviation of I to the mean of I is approximately

std(I) o7 1 1

~ =

BTl ~ \w? o5 Vi

which is O(6x10~7), a negligibly small ratio compared to that actually measured in Section 2.

Therefore, the inherent signal-dependent fluctuations of natural light have a negligible effect

on our image data.

B The lower bound on position estimation

This section analyzes how the lower bound on position estimation, as derived in Section 4.1,
varies with changes in object rotation. Let R be a two-dimensional orthonormal matrix.
The Fisher information can then be expressed in terms of R and a diagonal matrix D that

consists of R’s principal components Dy; and Dy,

Dy 0
i=Lp_Epprr-Eg| " R7. (55)
o? o2 o2 0 D
22
where
B:-B? 1
Dy = —2—¥ 4 5\/4B§y + (B2 — B2)? (56)
B2-B? 1
Dgy = ——‘2'-—y - 5\/43;2 +(BZ — B})*. (57)

The angle ¢ that rotates the z- and y-axes of the image into the principal axes given by the
object’s bandwidth matrix is defined by

282,
B2— B
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The lower bound on position recognition is therefore

-1 o’ 1T
J =ERD R". (59)

The lower bound on recognizing the position coordinate zo can then be expressed as

2 Dy1sing + Doy cos
El(z, — I g Un “
and on recognizing the coordinate yq as
2 .
E{(do —y0)*] > J;;' = 0° Dy cosp + Dy sing -

E Dy1Da,
If the coordinate axes correspond to the principal components of the bandwidth of the object,

i.e., B = Dy and B? = D;;,, then the error in the z- and y-coordinate of the position is

lower bounded by o2/(EBZ) and o?/(EB?), respectively. Let the total estimation error be

the Euclidean distance £ = \/E[(a%o —20)?]2 + E[(Jo — ¥0)?]>. The total error is then lower
bounded by

2
¢ > 7\/Dh + D} + 2Dy Daa sin 2. (62)

The bound is smallest if the principal components of the object’s bandwidth matrix are
aligned with the coordinate axes, i.e., p = 0 or ¢ = 7/2. The bound is largest for ¢ = 7 /4,
for which E[(Zo — 20)?] = E[(d0 — y0)?]-

C Linear invariance of the weighted matched filter

Given the definition in Eq. 40, the output of the weighted matched filter

AY L(z,y)(c19(z,y) + c2) — (X Lo(2,9)) (T(crq(z, y) + ¢2))
VAT I(2,9)* — (X I(2, ) A S (c14(z, y) + 2)? — (X(erg(,y) + &)

describes how well a linearly transformed replica ¢;¢(z,y) + ¢, matches with the measured

T(Iqa aq+ C2) -

data in subimage I,(z,y). The numerator of r(I,, 19 + ¢2) is

a (AX L(z,9)a(2,9) - X L(=z,v) Y a(=,9)) ,

and the second square root in the denominator is

(AT(d(g(z,9))? + 2c1629(2,y) + 63) — F(T q(z,9))* — 21 Aca T q(,y) — (Aca)?)/?,
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which yields

/A (0@ )2 ~ (Cale. )2

Since

a(AY Iy(z,y)q(z,y) = (X L(z,y)) (T gz, y)))

VAT L(z,9)2 — (X L(z,9))* s VAL (a(2,9))2 — (S (2, )
= T(Iqa Q)a

r(Itbclq + Cz) =

the weighted matched filter is invariant to linear transformations of image brightness and

Eq. 47 holds.
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